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Predictions enable top-down pattern
separation in the macaque face-processing
hierarchy

Tarana Nigam 1,2,3,4 & Caspar M. Schwiedrzik 1,2,3

Distinguishing faces requires well distinguishable neural activity patterns.
Contextual information may separate neural representations, leading to
enhanced identity recognition. Here, we use functional magnetic resonance
imaging to investigate how predictions derived from contextual information
affect the separability of neural activity patterns in the macaque face-
processing system, a 3-level processing hierarchy in ventral visual cortex. We
find that in the presence of predictions, early stages of this hierarchy exhibit
well separable and high-dimensional neural geometries resembling those at
the top of the hierarchy. This is accompanied by a systematic shift of tuning
properties from higher to lower areas, endowing lower areas with higher-
order, invariant representations instead of their feedforward tuning proper-
ties. Thus, top-down signals dynamically transform neural representations of
faces into separable and high-dimensional neural geometries. Our results
provide evidence how predictive context transforms flexible representational
spaces to optimally use the computational resources provided by cortical
processing hierarchies for better and faster distinction of facial identities.

We have all mistaken someone or been mistaken for somebody else.
Indeed, recognizing people by their face is a significant computational
challenge both for humans and machines, especially in light of varia-
tions in appearance, e.g., with a different hairstyle or pose. This is
particularly evident when distinguishing lookalikes (or doppelgänger)1

or identical twins2 (Fig. 1A). To do so, we need additional contextual
information, e.g., associations fromprevious encounters, whichweuse
tomake predictions3. Predictions render recognition better and faster,
yet the computations and neural implementation mediating those
effects remain poorly understood. In particular, it is unknown how
contextual predictions optimize sensory neural representations,
especially for distinguishing individuals by their face.

The reason for why we struggle to distinguish doppelgänger or
twins is that similar stimuli lead to correlated neural activity

patterns. To distinguish stimuli like faces, neural representations
should have minimal overlap and hence be “separable”. Separability
is largely determined by stimulus properties, i.e., how physically
similar faces are, and only achieved at hierarchically higher areas in
the ventral visual stream, where neural representations are also
robust against variations like pose change4. How can incorporating
predictive information enable distinguishing identities? Predictive
processing theories suggest that higher-order areas generate pre-
dictions that are communicated to lower areas via feedback
pathways5. We hypothesized that predictions reflect the repre-
sentations of the areas that generate the predictions, i.e., of higher-
level areas. When they are transmitted from higher-order to lower
areas, they carry this computational format - hence, incorporating
higher-order predictive information should lead to more separable
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(Fig. 1A) and invariant (Fig. 1B right) representations already in lower
areas of the hierarchy.

To investigate how predictability optimizes neural representa-
tions for distinguishing identities, we turned to the macaque face-
processing system (Fig. 1B left). This information processing hierarchy
in inferotemporal (IT) cortex is highly specialized for faces, and the
neural representations and transformations across successive stages
of processing are well understood. In the ventral part of this system,
representations become successively invariant to face view while the
system extracts facial identity: the lowest area, ML, represents face
shape and possesses view-specificity; the intermediate area AL has
mirror-symmetric representations; at the apex of the hierarchy, in AM,
representations are view-invariant and contain facial appearance
information for identity recognition6,7. We used functional magnetic
resonance imaging (fMRI) to access these qualitatively distinct repre-
sentations in all three face-areas simultaneously and to compare them

to the established electrophysiological ground-truth. By training ani-
mals to expect specific faces based on temporally preceding
information8 (Fig. 1C), we could test how predictions affect neural
representations, and whether feedback pathways are involved.

We find a gradient of pattern-separability along the face-
processing hierarchy with the highest separability at the top, in AM,
even when no predictive context exists. Once predictions come into
play, pattern-separability increases in lower stages of the hierarchy.
This is accompanied by the emergence of abstract, view-invariant
representations at these lower processing stages: rather than the view-
specific tuning properties they show in the absence of predictions, we
find that lower face-areas express representations characteristic of
higher stages of processingwhen stimuli are predictable. This suggests
that high-level prediction signals cascading-down the face-processing
system dynamically transform neural representational spaces,
endowing them with increased pattern-separability and invariance.
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Fig. 1 | Increasing pattern separability through top-down predictions. A Similar
faces, like those of lookalikes and twins are hard to distinguish because they lead to
poorly separable neural activity patterns. Contextual predictions, derived, e.g.,
from previously learnt associations, can aid distinguishing similar stimuli. We
hypothesize that predictive context facilitates recognition by increasing separ-
ability between neural activity patterns. E.g., a teacher who has trouble distin-
guishing identical twins in his class may utilize learnt contextual associations like
friends of one of the twins to help distinguish the similarly looking faces. B In the
faceprocessing system, the lowest areaMLhasview-specific shape representations,
the intermediate area AL has mirror-symmetric representations, and the top of the
hierarchy, AM, has view-invariant appearance representations. All stages are

directly and reciprocally connected. Higher face areas contain neural representa-
tions withminimal overlap (high separability) and view-invariance. We hypothesize
that incorporating high-level predictive information (via feedback pathways)
increases invariance and separability in lower areas, C To create contextual pre-
dictions, we exposedmonkeys to face pairs in a statistical learning paradigm. Once
learned, the first face in a pair (the “predictor”) predicts the second face in a pair
(the “successor”). In the test phase, we presented predictable face pairs (60% of all
trials) along with their violations during fMRI. Artwork depicting faces of kids in
panel A by M. Shitik and is reproduced with permission by the artist. The image of
the teacher is reproducedwith permission fromAlamy. The face images in panels B
and C were created using FaceGen Modeller.
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This may enable lower areas to abstract from irrelevant features for
enhanced distinction of identities. Our findings highlight the flexibility
of neural representations in IT and suggest a specific mechanism, top-
down pattern-separability, by which predictions exert their effects.

Results
As afirst step in investigatingwhether andhowpredictions alter neural
coding in the face-processing system, we localized three face-areas -
ML, AL, and AM – in two macaque monkeys using a standard face
localizer forwhole-brain fMRI (Supplementary Fig. S1).We then trained
themonkeys to associate temporally contiguous faces into pairs using
statistical learning8 (Fig. 1C). Once learned, the first face in a pair (the
“predictor”) fully predicts the second face (the “successor”). We
exposed themonkeys to nine face-pairs for aminimumof threeweeks,
providing ample time to elicit effects of predictability in IT cortex9. To
assess the acquisition of face-pair associations, we evaluated pupil
dynamics, an established marker of statistical learning10. Indeed, we
found pupil entrainment to the frequency of the face-pairs after
training (Supplementary Fig. S2). Once we established face-pair
learning in the monkeys, we investigated if and how coding spaces
changed as a function of contextual predictions across the face-
processing systemusing a rapid event-related design for fMRI (Fig. 1C).
In the expected condition (60% of trials), we presented learned face-
pairs, such that predictions were elicited once the predictor had been
shown and thus took effect when the successor appeared. On violation
trials, predictions went unfulfilled as we presented an unexpected
identity in the expected view or an unexpected view of the expected
identity as the successor8. Since our focus was on investigating how
predictability contributes to the identity recognition, one of the main
computational goals of face-processing, we mostly concentrate on
conditions involving facial identity.

Predictions increase separability in the face-processing
hierarchy
Before evaluating how predictive context optimizes neural repre-
sentations for face individuation, we first established how neural
separability for identity increases across the face-processing hierarchy
in the absence of predictive context (the context-free condition) using
Representational Similarity Analysis (RSA)11. In each of the three face-
areas we measured cosine distances between activity patterns elicited
by different faces (Fig. 2Ai). We report average results because these
distances were highly correlated across monkeys (Spearman’s
rho(7) = 0.95, p = 3.5e−04). Pattern-separability increased along the
hierarchy (ML <AL <AM, paired Hotelling test, all F(2,34) > 56.7582, all
p < 1.462e−11, corrected for multiple-comparisons). This corroborates
previous electrophysiological studies in IT cortex outside the face-
processing system12 and indicates that, in the absence of predictability,
high levels of pattern-separability for facial identities are only achieved
in AM, the top of the face-processing hierarchy.

After determining baseline pattern-separability across the face-
processing system, we evaluated whether predictability aids face
identification by increasing pattern-separability in lower areas. We
compared separability across face identities between the expected and
context-free conditions (Fig. 2Aii): when faces were expected, we
found that lower areas in the face-processing hierarchy, ML and AL,
increased pattern-separability for identities by ~10° from 52.1° to 61° in
ML and 67.7° to 77.2° in AL (Fig. 2B; William-Watson test, ML:
F(1,70) = 79.74, p = 1.067e-12; AL: F(1,70) = 34.49; p = 2.619e−07, cor-
rected for multiple comparisons). In contrast, pattern-separability in
the higher area AM remained unchanged (84.7° vs. 87.5°; F(1,70) = 3.53;
p =0.0644, corrected for multiple comparisons). This suggests that
high separability otherwise characteristic of the top of the processing
hierarchy can be approached in lower areas if predictive information
exists - potentially facilitating readout of information from well dec-
orrelated representations.

Predictive processing theories suggest that predictions serve to
compute prediction errors (PE) as a deviation between the prediction
and the sensory input to reduce redundancy in information
transmission13: redundant information is removed, optimizing the
dynamic range of neurons and allowing them to efficiently signal
decorrelated or unpredicted information14. In terms of pattern
separation, this may entail higher pattern-separability when PEs (to
unexpected faces) occur, possibly even higher than in the expected
condition where no PEs need to be computed. To evaluate this possi-
bility, we compared pattern separation between the violation and
context-free conditions in the three face areas. Prediction violations
increased pattern-separability in the entire face-processing hierarchy
(Fig. 2B; William-Watson test, ML: 77.7° vs. 52.1°, F(1,70) = 485.84,
p <0.0001; AL: 82.8° vs. 67.7°, F(1,70) = 115.65, p = 4.44e−16; AM: 89.6°
vs. 84.7°, F(1,70) = 14.00, p =0.0003, corrected for multiple compar-
isons). AM patterns were, in fact, almost orthogonal in this condition
(mean 89.6°, one-sample test for mean angle vs. 90°, p > 0.05). Inter-
estingly, prediction violations increased pattern-separability even
beyond the separability achieved in predictable conditions, but only in
lower stages of the hierarchy (paired Hotelling test, ML: 77.1° vs. 61°,
F(2,34) = 97.0819, p = 2.631e−14; AL: 82.8° vs. 77.2°, F(2,34) = 9.9190,
p = 8.084e−04; AM: 89.6° vs. 87.5°, F(2,34) = 1.7520, p =0.1887, cor-
rected formultiple-comparisons). PEs thus appear to enhance pattern-
separability in lower processing stages, possibly by optimizing the
available dynamic range, while the top maintains a stable prior. Taken
together, our results suggest that pattern separation may be the
mechanism underlying the beneficial effects of predictability in IT
cortex, decreasing interference between representations of identities.
By increasing pattern-separability at lower stages of processing, pre-
dictions may thus help in achieving one of the core computations for
face/object recognition earlier than in the absence of predictive
context.

High-dimensional neural codes underlie predictability-induced
increase in separability
Howdopredictions give rise to increased separability in the hierarchy?
We hypothesized that contextual information provided by predictions
could add feature dimensions for separability – implying that pre-
dictive cues improve separability by increasing dimensionality of
neural representational space (Fig. 2Aiii). To evaluate this hypothesis,
we quantified dimensionality using the Participation Ratio (PR)15,16

which describes how evenly the variance of neural activity is spread
(i.e., dimensionality is high if variance is spread across all dimensions).
PR was computed per face area and condition across all voxels and
stimuli. We first established that PR was interpretable, i.e., well differ-
entiated from noise, in all conditions and face-areas (Fig. 2C; com-
parison to noise-ceiling for each monkey, all p < 9.99e−04, 1000
permutations, corrected for multiple comparisons). Next, we investi-
gated PR as a function of hierarchy. In the context-free condition, we
found higher dimensionality in AM than in lower stages ML and AL
(comparison of difference to noise ceiling between areas for each
monkey, all p < 9.9e−04, 1000 permutations, corrected for multiple
comparisons). For expected faces, dimensionality increased in lower
areas AL and ML (that had shown increases in pattern separability)
compared to the context-free condition (Monkey L – ML: p =0.0189,
AL: p =0.004; Monkey P – ML: p = 0.045, AL: p <0.0001, 1000 per-
mutations, corrected for multiple comparisons). When expectations
were violated, dimensionality increased even further compared to the
expected condition in ML (Monkey L: p <0.0001; Monkey P:
p <0.0001, 1000 permutations, corrected for multiple comparisons)
and AL (Monkey L: p <0.0001; Monkey P: p =0.0001, 1000 permuta-
tions, corrected for multiple comparisons), and slightly less con-
sistently in AM (Monkey P: p < 0.0001; Monkey L: p = 0.055, 1000
permutations, corrected for multiple comparisons). Dimensionality
and separability across conditions and hierarchy were highly
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correlated (Spearman’s rho(7) = 0.95, p = 3.5273e−04), suggesting that
contextual signals (like predictions and/or PEs) increase pattern-
separability through an expansion of representational dimensionality.

Previous studies have shown that deviance between predictions
and sensory inputs is signaled as a difference in the magnitude of
neural activity between unexpected and expected stimuli8,17,18. Indeed,
we also found stronger responses in the unexpected than in the
expected condition in all three face areas (Supplementary Fig. S3; all
p < 3.5e-04). However, this difference inmagnitude did not explain the

increase in pattern-separability (correlation between mean separ-
ability and mean amplitude across face areas and conditions: Spear-
man’s rho(7) = 0.0167, p =0.9816; correlation between stimulus-wise
separability and magnitude for each condition and face area sepa-
rately: highest Spearman’s rho(7) = 0.10, all p >0.05) nor dimension-
ality (rho(7) = 0.2667, p =0.4933) with contextual information across
the hierarchy. This is in line with previous findings indicating that
population magnitude and separability in IT cortex convey different
information19.
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Fig. 2 | Predictions increase separability in the face-processing hierarchy. A.i
Pattern-separability was computed as pair-wise cosine distances between activity
patterns elicited by all faces presented in each context.A.iiNeural activity patterns
are well separable when there is minimal overlap between population vectors.
Separability between the same faces can depend on context. The angle θ between
population vectors denotes separability. A.iii Activity patterns may not be well-
separable in low-dimensional spaces. Expanding dimensionality, e.g., by adding
feature dimensions, can increase separability. B Pattern-separability increases
along the face-processing hierarchy from ML (52.1°) to AL (67.1°) to AM (84.7°) in
the context-free condition (green). Lower areas in the hierarchy increase pattern-
separability when faces are expected (gray; ML 52.1° to 61°; F(1,70) = 79.74,
p = 1.067e-12; AL: 67.7° to 77.2°,F(1,70) = 34.49, p = 2.619e-07, William-Watson test),
whereas AM shows no difference in separability (84.7° vs. 87.5°, F(1,70) = 3.53,
p =0.0644). Prediction violations (red) increase separability in all areas even fur-
ther (ML: 77.7° vs. 52.1°, F(1,70) = 485.84, p <0.0001; AL: 82.8° vs. 67.7°,
F(1,70) = 115.65, p = 4.44e−16; AM: 89.6° vs. 84.7°, F(1,70) = 14.00, p =0.0003,
William-Watson test). Only lower areas have higher separability in the unexpected
than in the expected condition (ML: 77.1° vs. 61°, F(2,34) = 97.0819, p = 2.631e-14;
AL: 82.8° vs. 77.2°, F(2,34) = 9.9190, p = 8.084e-04; AM: 89.6° vs. 87.5°,
F(2,34) = 1.7520, p =0.1887, paired Hotelling test). Lines depict mean angles,

squares and circles pair-wise angles between identities permonkey.n = 36pair-wise
angles. All p-values were corrected for multiple comparisons and all tests are two-
sided. C Estimated dimensionality in all areas and conditions is lower than that of
the noise ceiling (light gray boxplots, all p < 9.99e−04, permutation test (one-
sided), 1000permutations). In the context-free condition (green), dimensionality is
higher in AM than in lower areas (all p < 9.9e−04 for both monkeys, permutation
test (two-sided), 1000 permutations). Dimensionality increases when faces are
expected (gray) inML (Monkey L:p =0.0189,Monkey P:p =0.045) andAL (Monkey
L:p =0.004;Monkey P: p <0.0001). Violations (red) expand dimensionality further
inML (Monkey L: p <0.0001, Monkey P: p <0.0001) and AL (Monkey L: p <0.0001;
Monkey P: p =0.0001), and less consistently in AM (Monkey P: p <0.0001; Monkey
L: p =0.055). Squares and circles depict individual monkeys. All p-values were
corrected for multiple comparisons. The permutation tests to test whether the
estimated dimensionality is lesser than noise ceiling are one-sided, all other tests to
compare conditions or ROIs are two-sided. See Supplementary Table 1 for each
value of estimated dimensionality (participation ratio) and the distribution of the
noise ceiling depicted in the light gray boxplots (minima, maxima, median, bound
box: 25th, 75th percentile and whiskers: lower and upper adjacent). Source data are
provided as a Source data file. The face images in panel A were created using
FaceGen Modeller.
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High-level predictions cascade down the face-processing
hierarchy
How can predictive signals increase separability in lower stages of the
hierarchy? One possibility is that lower areas inherit (more separable)
representations from higher areas via feedback pathways conveying
predictions.Higher areas in the ventral stream contain representations
that are not only highly separable, but also invariant, e.g., for view. A
consequence of predictions being passed fromhigher to lower areas is
that lower areas should inherit the invariant tuning properties of the
areas where the predictions originate. To evaluate this hypothesis, we
determined the representational geometry across the face-processing
hierarchy using RSA11 (Fig. 3Ai). We computed cosine distances
between the activity patterns for different face stimuli and compared
1st level RDMs to model RDMs based on known electrophysiological
tuning properties of each face area (Fig. 3Aiii, see below). Results were
highly correlated across monkeys (Spearman’s rho(7) = 0.5524;
p = 2.3830e−04), hence, we report results from averaged 1st
level RDMs.

First, in the context-free condition, we established that our
approach recapitulated the known electrophysiological tuning prop-
erties of face-processing areas6,7. As expected, the known tuning
properties best explained the representational geometry in all three
face areas: view-specific representation of facial shape in ML, mirror-
symmetric representation in AL, and view-invariant representation of
facial appearance in AM (Fig. 3B; bootstrapped test comparing 2nd
level correlation coefficients, one-sided, 10000 bootstrap samples;
ML: shape vs. 3 others, difference =0.3153; p = 0.0417; AL: mirror
symmetry vs. 3 others, difference = 0.8364, p <0.0001; AM: 2
appearance-based models vs. 2 others, difference = 0.4712,
p =0.0019).

Next, we tested the hypothesis that under predictable conditions,
lower areas exhibit higher-order tuning properties. To this end, we
compared representational geometry between the expected and
context-free conditions in ML and AL. These lower areas indeed
expressed higher-order, abstract representations: ML showed an
increase in mirror-symmetric tuning, characteristic of AL (one-sided
Raghunathan’s test, z = −1.684,p =0.0460),while AL showed increased
tuning for appearance (z = −2.446, p = 0.0072) and view-independent
appearance (z = −4.290,p = 8.941e-6), characteristics ofAM.Moreover,
in the predictable condition we observed a decrease in the classical,
feedforward tuning properties in the entire face-processing network,
i.e., decreased shape tuning in ML (z = 1.848, p =0.0323), decreased
mirror-symmetric tuning in AL (z = 2.441, p =0.0073), and decreased
appearance (z = 2.363, p =0.0091) and view-independent appearance
tuning (z = 2.626, p =0.0043) in AM. Thus, rather than expressing their
own feedforward tuning properties, lower areas ML and AL exhibited
representations characteristic of higher face-areas when stimuli were
predictable.

Furthermore, we found higher functional pattern connectivity
between all pairs of face areas in the expected compared to context-
free condition (difference between correlations = 0.2143, p =0.048),
suggesting that more information is exchanged between face areas in
the presence of predictions. Taken together, this suggests that high-
level predictions cascade-down the entire face-processing hierarchy
along feedback pathways, carrying with them a representational for-
mat that enables better pattern separation.

Finally, we investigated the representational format of prediction
errors (PEs) in the unexpected conditions. We operate under the pre-
mise that PEs in high-level cortex do not merely signaling surprise, but
are teaching signals20 carrying feature-specific content8,21,22. Our results
so far suggest that lower areas inherit tuning properties from higher
areas through predictions. Because according to predictive processing
theory, PEs are computed relative to predictions generated in higher
areas, we hypothesized that PEs in lower areas should also express
higher-level tuning properties8,23–25. Alternatively, PEs could enhance

feedforward information, i.e., the local tuning properties of the area in
which they are generated26. To differentiate these hypotheses, we
isolated PEs by computing the relative difference between the expec-
ted and the unexpected conditions27 and then applied RSA (Fig. 3Aii).
For identity PEs, we found that the pattern of tuning properties was
highly correlated with the expected condition (Fig. 3B; Spearman’s
rho(7) = 0.7273, p = 0.01), suggesting that the representational geo-
metry evident in the expected condition indeed forms the basis of the
computation of PEs when unexpected identities occur. Further mir-
roring the expected condition, there was an increase in appearance
(one-sided Raghunathan’s test, z = −2.383, p = 0.0086) and view-
independent appearance tuning (z = −2.412, p = 0.0079) in AL com-
pared to the context-free condition, concomitant to a decrease in
mirror-symmetric tuning (z = 3.516, p =0.0002). Similarly, appearance
(z = 2.102, p =0.0178) and view-independent appearance tuning
(z = 2.577, p =0.0049) again decreased in AM. This suggests that
identity PEs in the unexpected identity condition are computed in AL
on the basis of appearance tuning originating in AM, i.e., one stage
earlier than identity information in the context-free condition. Simi-
larly, and in accordance with our previous electrophysiological results
from ML8, we found significant mirror-symmetric tuning in ML (boot-
strapped test, p =0.039, n = 10000 bootstrap samples) in the unex-
pected view condition (although this form of tuning did not exhibit a
statistically significant increase over the context-free condition; one-
sided Fisher test, z = −0.887, p =0.188). This was accompanied by a
decrease of mirror-symmetric tuning in AL (z = 3.479, p =0.0003).
Overall, this suggests that PEs are computed on the basis of high-level
prediction signals in lower areas of the face-processing hierarchy.

Discussion
Taken together, our results reveal that incorporating predictive cues
optimizes neural representations for distinguishing facial identities by
increasing separability of neural activity patterns already early in the
face-processing hierarchy. The improved separability with contextual
information comes with an expansion of dimensionality of neural
representational space. These effects can be achieved by cascading-
down prediction signals via feedback pathways - such that well sepa-
rated, invariant representations characteristic of higher face-areas are
passed down to lower areas. Our work thus proposes a distinct
mechanism, i.e., top-down pattern-separability, through which pre-
dictions exert their effects.

Well separated neural representations are beneficial for proces-
sing because they allow for linear readout of information28,29 and
learning new associations30. Pattern separation is a well-established
computational mechanism, originally attributed to hippocampal and
cerebellar circuits31–33. Recent proposals assign this computation also
to cortex34 - albeit with different implementations owing to the distinct
architectures. We find that predictive information enables high
separability in lower areas of the ventral visual stream, which is
otherwise only characteristic of the top of this cortical processing
hierarchy. Highly separated representations early on in the hierarchy
may be beneficial since they facilitate early readout of high-level
information like object identity.

Theory suggests that highly separable representations can arise
from dimensionality expansion28,29 - providing a larger neural activity
space for linear separability. We find that AM at the top of the face-
processing hierarchy, which is thought to directly contribute to face
individuation, has high dimensionality, similar to the human face-
processing hierarchy35. This may be related to the inherently high
dimensionality of face space required to differentiate individuals36.
Increases in separability in AL and ML brought about by predictability
are accompaniedby an expansionof dimensionality. This suggests that
the dimensionality of IT cortex activity is in principle flexible and not
hardwired.Ourfindings thus resonatewith studies in other species and
brain areaswhich have shown that the dimensionality of neural activity
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Fig. 3 | High-level predictions cascade down the face-processing hierarchy. Ai.
Representational Similarity Analysis (RSA) was performed for each face area. 1st
level representational dissimilarity matrices (RDMs) were computed for the
context-free (green) and expected (gray) condition as cosinedistancesbetween the
stimulus-evoked activity patterns to the different faces shown within each condi-
tion. A.ii Prediction error (PE) geometry was calculated on the relative activity
difference of the same faces in the expected vs. unexpected condition.A.iii 1st level
RDMs from the expected condition and PE geometry were compared to model
RDMs derived from known tuning properties of the face areas (shape, mirror-
symmetry, appearance, view-independent appearance). Model RDMs were com-
puted on distances between features vectors of the face stimuli. B In the context-
free condition (green), activity patterns recapitulated known tuning properties of
all three face areas (ML: shape vs. 3 others, p =0.0417; AL: mirror-symmetry vs. 3
others, p <0.0001; AM: 2 appearance-based models vs. 2 others, p =0.0019, one-
sided bootstrap test). When faces were expected (gray), lower areas showed
increases in higher-order tuningproperties compared to the context-free condition

(one-sided Raghunathan test, ML: mirror-symmetry, p =0.0460; AL: appearance
p =0.0072 and view-independent appearance, p = 8.941e−6). This was accom-
panied by a decrease of feedforward tuning properties in all areas (ML: shape,
p =0.0323; AL: mirror-symmetry, p =0.0073; AM: appearance, p =0.0091, view-
independent appearance, p =0.0043). Across areas, PE (red) geometry was highly
correlated to the geometry in the expected condition (Spearman’s rho = 0.7273,
p =0.01). Compared to the context-free condition, PEs in AL showed increased
appearance (p =0.0086) and view-independent appearance tuning (p =0.0079),
along with a decrease in mirror-symmetry (p =0.0022). Similarly, AM showed a
decrease in appearance (p =0.0178) and view-independent appearance tuning
(p =0.0049). Violin plots show the distribution of the bootstrapped Z-transformed
2nd level similarity values (n = 10,000 bootstraps). Error bars depict the boot-
strapped SEM of the Z-transformed 2nd level similarity. See Supplementary Table 2
for individual model fits. Source data are provided as a Source data file. The face
images in panels A and B were created using FaceGen Modeller.
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can change on short timescales, e.g., from spontaneous to stimulus-
evoked activity37, or with task engagement38.

Furthermore, we find that in the presence of expectations, lower
areas in the face-processing hierarchy express higher-order repre-
sentations and enhanced functional connectivity with higher areas.
This suggests that predictions originating from high-level face-pro-
cessing areas are propagated down to lower areas via feedback con-
nections, in line with predictive processing theories39. Predictions lead
to a complete transformation of representational geometry, suggest-
ing that they impose the high-level representational format char-
acteristic of the stage of processing at which they are generated, at the
expense of the feedforward tuning properties of the respective lower
area. This transformation spans the entire face-processing hierarchy:
ML inherits tuning properties of AL, and AL inherits tuning properties
of AM. This results in the processing of facial appearance, a dimension
most closely related to face identification40, at earlier stages of pro-
cessing than when no context is available. AM itself no longer shows
image-bound properties expressed in the ventral face-processing
network (i.e., appearance), but may inherit yet more abstract, perhaps
conceptual representations from the frontal or medial temporal lobe
(MTL) with which it is intricately connected41,42. This radical transfor-
mation between predicted and context-free representations under-
scores IT’s capacity to flexibly and dynamically switch coding regimes
on very short timescales, i.e., trial-by-trial, and refutes the notion that
tuning properties are hard-wired after years of learning and
development.

Whether predictions transform representations in the entire
population of lower areas towards higher-order properties is an
interesting question that we cannot answer with the spatio-temporal
resolution of fMRI and therefore requires further electrophysiological
studies.While a transformationof the entire population is possible, it is
also thinkable that subpopulations maintain their inherent repre-
sentations, while others switch43 towards higher-order properties.
Furthermore, it is also possible that transformations of representa-
tions unfold dynamically in time: the predictor face may activate top-
down processes in higher face areas that subsequently act upon the
successor face via late-occurring feedback signals. In line with this, our
previous electrophysiological results on PEs in the face area ML8 sug-
gest at least two temporal phases of information passing during the
successor face: an early phase with a latency of about 130ms in which
prediction errors are computed, and a later phase where high-level
tuning properties like mirror-symmetry become apparent in ML. It
would be interesting for future studies to disentangle the different
computational components that are likely at work within a population
of neurons that is thought to be minimally composed of PE and pre-
diction units44.

Signaling predictions and deviations from them not only
improves sensory encoding but also refines internal models by means
of PEs. We find that unexpected stimuli boost pattern-separation in
lower face-processing areas beyond the separability found in the
expected condition, while notmodulating separability at the topof the
hierarchy. PEsmay refine internal models by increasing separability, in
line with memory updating in the MTL45 and episodic memory
enhancement46,47. Predictive processing theories14 suggest that PEs
allow for an optimization of the available dynamic range of neurons to
signal differences from the predicted face, such that several signal
levels can be effectively expressed making themmore separable than,
e.g., the images without predictive context or in the expected condi-
tion where no PEs are computed. Furthermore, the concomitant
increase in dimensionality that we find in the unexpected condition
suggests that contextual information provided by predictions intro-
duces additional dimensions into the representational geometry for
separability. This would be in line with conjunctive representations
between stimulus features and context19,48, specifically between sti-
mulus features and PEs8 observed electrophysiologically in IT cortex.

Such mixed selectivity could boost pattern-separability and enable
more effective readout from high dimensional representational
spaces28.

Previous studies have explained predictions by dampening, i.e.,
gain modulation49,50, and/or sharpening of highly selective neurons51.
While we find differences in amplitudes (i.e., lower amplitudes for
expected than unexpected faces, Supplementary Fig. S3) in line with
previous studies, they do not explain the differences in separability
that we find across the face-processing hierarchy and between condi-
tions, which arise from the multivariate spatial pattern of activity.
Sharpening could also predict better discriminability of facial iden-
tities as a function of the underlying selectivity; however, sharpening
accounts would suggest the highest increase in separability in AM
because this area contains the highest fraction of identity-selective
neurons6. Furthermore, sharpening has been argued to be specific to
early visual cortex and/or low dimensional stimuli such as gratings52,53

(but see refs. 9,50). Since neither sharpening nor dampening effects
are mutually exclusive to pattern separation, unraveling the relation-
ship of these mechanisms remains an important target for future
research. Additionally, it is possible that there are differences in
amplitude between predictor and successor images due to the
experimental design (see Methods). However, such differential adap-
tation effects could not plausibly lead to inheritance of higher-order
tuning properties by lower face areas.

How statistical learning effects on sensory processing are related
to episodic memory remains an interesting avenue for future research.
A previous study in humans investigating competitive dynamics
between statistical learning and episodic memory reported that pre-
dictor images are remembered worse than successor images54. This
might suggest that predictor images in our study were less separable
than (un)expected successors by virtue of being predictive (and not
because they were processed in the absence of a predictive context).
However, in the abovementioned study, decoding of visual information
from category-selective cortex did not predict memory performance;
furthermore, a subsequent study using the same paradigm and intra-
cranial recordings in epilepsy patients found that although some pre-
dictor images in a pair are subsequently forgotten, category
information during the presentation of later forgotten and later
remembered predictors is identical, and hence, that variance in mem-
ory is not due to the strength of perceptual processing of the stimuli55.
Thus, although the relationship between predictiveness and memory
warrants further investigation, separability in visual cortex in the
context-free condition is likely to result from sensory processing alone.

Overall, our results provide insight into the question how the
ventral stream implements predictions: top-down signals that dyna-
mically transform neural representations into separable and high-
dimensional neural geometries. Passing tuning properties down to
earlier processing stages allows extraction of high-level, abstract
information earlier than what is possible in the absence of predictions,
when feedforward computation dominates and signals need to ascend
the entire hierarchy to provide information about facial identity. Pre-
dictions thus also free resources for the processing of yet more
abstract, less image-bound information in the areas whose feedforward
tuning properties are now shifted upstream. Predicting on the basis of
invariant tuning properties that abstract over irrelevant features cir-
cumvents overfitting to individual images and has an extended tem-
poral horizon compared to pixel-level predictions which are prone to
fail in noisy conditions. Our results thus exemplify how feedback con-
nections enable flexible representational spaces that optimally use the
computational resources provided by cortical processing hierarchies.

Methods
Monkey subjects and surgical procedures
Data for this study were acquired in two adult macaque monkeys
(Macaca mulatta): one male (Monkey P, 6.5–7 kg, 9 years) and one
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female (Monkey L, 8.5–9 kg, 10 years). No power calculation was per-
formed to determine the sample size, but was chosen to be in accor-
dance with previous studies56,57. We did not have sufficient sample size
to investigate differences between female and male macaque mon-
keys. All procedures with Monkey P were conducted at the German
Primate Center, Göttingen and approved by the responsible regional
government office (Niedersächsisches Landesamt für Ver-
braucherschutz und Lebensmittelsicherheit - LAVES). The animal was
either housed in pairs or groups, adhering to German and European
regulations. The facility provided a stimulating environment for the
animals, including various toys and structures, natural and artificial
lighting, and access to outdoor spaces, surpassing the space require-
ments outlined in European regulations. All procedures withMonkey L
complied with the National Institutes of Health Guide for Care and Use
of Laboratory Animals and were approved by the local Institutional
Animal Care and Use Committees of The Rockefeller University (pro-
tocol number 21104-H USDA) and Weill Cornell Medicine (protocol
number 2010-0029), where magnetic resonance imaging (MRI) was
performed. The animal was housed with other macaque monkeys and
had access to a stimulating environment including various toys for
enrichment. The well-being of both the animals, both psychologically
andmedically, was closely monitored on a daily basis by veterinarians,
animal facility personnel, and scientists. Both animals were subjected
to surgical procedures whereMRI-compatible cranial head-posts were
implanted, embedded within bone cement, anchored with MR-
compatible ceramic screws under general anesthesia and sterile
conditions8. The animals underwent extensive training using positive
reinforcement58 to become accustomed to entering and remaining
seated in a horizontal primate chair. Their head positionwas stabilized
using the implanted head-posts, allowing for cleaning of the implants,
accurate recording of gaze/pupil diameter, and minimizing motion
artifacts during MRI experiments.

We conducted this study in non-human primates using fMRI such
that we can test hypotheses about pattern separation and predictive
processing by imaging the entire face-processing hierarchy. Studying
this in non-human primates has distinct advantages: 1. It allows direct
comparison to the representation known from ground-truth electro-
physiology data6,7. 2. Anatomical connectivity about direct feedfor-
ward and feedback connections between face areas42 along with
functional connectivity41 has been mapped out; 3. A clear hierarchical
organization between the face areas has been determined6,59. Such
ground-truth data on connectivity, representations, and hierarchy are
not available in humans, even though a face-processing network
comprising areas in the occipital lobe, fusiform gyrus, and anterior
temporal lobe have been found60.

MRI data acquisition
MRI data were acquired on 3T scanners (Monkey P: MAGNETOM-
Prisma; Monkey L: MAGNETOM-Prisma_fit, Siemens Healthineers,
Erlangen, Germany). Anatomical imageswere obtained for each animal
in a separate session using a T1-weighted magnetization-prepared
rapid gradient echo (MPRAGE) sequence (Monkey P: field of view
[FOV] 128mm, voxel size = 0.5 × 0.5 × 0.5mm, repetition time [TR] =
2.7 s, echo time [TE] = 2.96ms, inversion time [TI] = 850ms, band-
width [BW] = 220Hz/Px, flip angle [FA] = 8 degrees, 240 slices, 11 cm
loop coil, Siemens Healthineers; Monkey L: FOV= 128mm, voxel
size = 0.5 × 0.5 × 0.5mm, TR = 2.7 s, TE = 2.99ms, TI = 868ms, BW=
230Hz/Px, FA = 9 degrees, 240 slices, custom 1-channel receive coil L.
Wald, MGH Martinos Center for Biomedical Imaging) while the mon-
keys were anesthetized (isoflurane 1.5%–2%) and positioned in an MR-
compatible stereotactic frame (Kopf Instruments). Functional images
were acquired using custom 4 or 8 channel phased-array receive sur-
face coils with a horizontally oriented single loop transmit coil (H.
Kolster, Windmiller Kolster Scientific, and L. Wald, MGH Martinos
Center for Biomedical Imaging) while the monkeys were in a sphinx

position. Each functional timeseries consistedofwhole-braingradient-
echo planar images (EPI; FOV = 96mm, voxel size = 1.2 × 1.2 × 1.2mm,
TR = 2 s, TE = 27ms, BW= 1302Hz/Px, echo spacing [ESP] = 0.93ms,
FA = 76 degrees, 43 slices) acquired in interleavedorderwith two times
generalized autocalibrating partially parallel acquisitions (GRAPPA)
acceleration. All functional images in the Statistical Learning Paradigm
(see below) for both monkeys and Face Localizer (see below) in
Monkey P were acquired with the above sequence parameters. Func-
tional images for Face Localizer in Monkey L were acquired with the
contrast agent ferumoxytol (Molday ION, BioPAL, Worcester, USA),
and hence slightly different sequenceparameters (FOV = 96mm, voxel
size = 1.2 × 1.2 × 1.2mm, TR= 2.25 s, TE = 17ms, BW= 1525Hz/Px, FA =
79 degrees, 45 slices). Right before every scanning session, ferumox-
ytol was injected into the saphenous vein. The amount administered
ranged from 9mg of Fe per kg of the animal’s body weight during the
first scan to 6mg on following days to account for the functional half-
life of the contrast agent. On every session, field maps (FOV = 96mm,
voxel size = 1.2 × 1.2 × 2.4mm, TR =0.7 s, TE1 = 5ms, TE2 = 7.46ms,
FA = 60degrees, 22 slices)were also acquiredwhichwere later used for
EPI undistortion61.

Face localizer
We use a standard face localizer to localize the face patches ML, AL,
and AM62. Subjects fixated on a central white dot while we displayed
images of human/monkey faces, body parts/headless bodies, man-
made objects, and fruits, alternating with baseline periods in a block
design (FOB). Each block lasted 24–30 s. Fluid reward was given after
variable 2–4 s periods, contingent on gaze staying within 2 degrees of
the fixation dot. Analysis included runs where subjects achieved
≥80–85% fixation stability. Visual stimulation and reward were con-
trolled using Psychtoolbox63 for Monkey P and Presentation (v19,
Neurobehavioral Systems) for Monkey L. Stimuli were projected on a
back-projection screen using a video projector (Monkey P: Epson EB-
G5600, refresh rate 60Hz, resolution 1920 × 1080 px; Monkey L: NEC
NP3250, refresh rate 60Hz, resolution 1024× 768 px) with a custom
lens. Eye position was measured using a video-based eye tracking
system (Monkey P: SR Research Eyelink 1000 NHP Long Range Optics
at 1000Hz, Monkey L: ISCAN at 120Hz).

Statistical learning paradigm
For the statistical learning experiment, we generated 30 three-
dimensional faces with neutral expression and no hair using FaceGen
Modeller Pro 3.27 (Singular Inversions). Seven views (0°, 30°, 45°, 60°,
300°, 315°, 330°) were extracted for each face. The faces were coun-
terbalanced for their gender and skin texture was added such that the
right profile image was not a simple mirror-version of the left-profile
image. The images were converted to grayscale and then luminance
normalized using the SHINE toolbox64. The training set for the statistical
learning experiment consisted of 18 facial identities with 6 images of
frontal, right and left profile-vieweach. Thesewere split into 9predictor-
successor pairs such that the head orientations were balanced within
predictors and successors, respectively8. There are no separability dif-
ferences between the set of predictor and successor face-stimuli in
terms of low-level image properties (gabor-filterbank, t(70) = −0.3525;
p=0.7255) asmuch as in terms of shape (t(70) =0.6015; p=0.5494) and
appearance (t(70) =−0.9056; p=0.3682).

Prior to the training phase, monkeys were familiarized with the
entire set of 30 faces in all the 7 views in randomizedorder such that no
image was novel to the monkey. The monkeys were then exposed to
the face-pairs to establish associations between the predictor and the
successor images. Pairs were arranged such that one identity-view
combination would uniquely predict one other identity-view combi-
nation (Supplementary Fig. S4). Training was conducted with
sequentially presented face-pairs for at least 3 weeks for both mon-
keys. The sequence of pairs was designed such that the transitional
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probability within a pair was 100% and the transitional probability
between pairs was kept at a minimum.

In the early phase of training, each image was presented foveally
(8 dva in size) for 500ms with an inter-stimulus interval of 500ms.
Longer baselines (up to 9.5 s) and spatial jittering (~1 dva) from the
foveal position were gradually introduced over the training period.
This was done to accustom the animals to the task design to be used
during the fMRI experiments. The monkey was rewarded with water/
juice every 2.5–3.8 s for maintaining fixation within a 2–3 dva window
around the fixation dot presented at the center of the screen. To
control visual stimulation and reward delivery, we used mWorks
(https://mworks.github.io/) and a custom-built input-output device (R.
Brockhausen) using Teensy 3.6 (PJRC: Electronic Projects) for Monkey
P, and Presentation (v20.2, Neurobehavioral Systems) with a com-
mercially available data acquisition device (Measurement Computing
USB 1208FS) for Monkey L. Stimuli were presented using a video
projector for Monkey P (Barco F22 WUXGA; refresh rate, 60Hz;
resolution, 1920 × 1080 px) and displayed on a monitor for Monkey L
(Dell E2011H, refresh rate 60Hz, resolution 1920 × 1080 px). Eye
position was measured using video-based eye tracking (Monkey P: SR
Research Eyelink 1000 at 1000Hz, Monkey L: ISCAN at 120Hz).

The testing phase of the statistical learning paradigm took place
while fMRI data were acquired (Monkey L: 81 runs;Monkey P: 56 runs).
In this phase, learned face-pairs were presented such that one face
predicted the next; violations of the predictions (40% of all trials) were
introduced in the second image of a face-pair. The violations entailed a
successor image with a different identity (but with the expected view)
or a different view (but with the expected identity) than during the
training phase. To create the identity violation conditions, we sys-
tematically recombined the trained predictor image of a pair with that
of another successor image to generate unexpected pairs. This was
done to avoidnovelty effects, such that unexpected identitieswere not
novel identities for the monkey. To create the view violation condi-
tions, we presented the predicted identity but with a different head
orientation than during training. The experimenter was not blinded to
the experimental conditions. A fixation dot was continuously pre-
sented at the center of the screen and the monkey was rewarded for
maintaining fixation within a 2–3 dva fixation window every 2.2–3.6 s.
Reward was thus not contingent upon image presentation but entirely
on fixation performance. We used a rapid-event related design: each
face image was presented for 500ms, aligned to the onset of volume
acquisition. To facilitate single-trial deconvolution of the blood oxy-
genation level dependent (BOLD) response, baseline durations were
jittered between 1.5, 3.5 and 5.5 s for intra-pair and 5.5, 7.5 and 9.5 s for
inter-pair intervals. The face imageswere spatially jitteredwithin ~1 dva
around the fixation dot to avoid low-level adaptation effects.

MRI processing
Anatomical images were intensity normalized, skull-stripped, and
segmented using Freesurfer (v5.3, https://surfer.nmr.mgh.harvard.
edu/)65. Preprocessing of fMRI data was done using Freesurfer’s func-
tional analysis stream, FS FAST, AFNI66 and the JIP toolkit (https://www.
nitrc.org/projects/jip). Slice-wise motion-correction was done within
each run using AFNI’s 3dAllineate with terms for cubic warping in the
phase encoding direction, as well as shifts, rotations, scaling, and
skewing, followed by slice-time correction using FS FAST. Geometric
distortions of the functional volumes were corrected by means of the
field maps, followed by mutual information-based non-linear align-
ment to the high-resolution anatomical scans as implemented in JIP.

Statisticalmodelingwasdone using aGeneral LinearModel (GLM)
in FS FAST. Predictors of interest were convolved with the canonical
hemodynamic response function (HRF) for BOLD for all experiments
except forMonkey L’s Face Localizer data whereHRF parameters were
appropriate for ferumuxytol67. Motion parameters, fixation stability,
and reward were included as nuisance regressors. The first five

volumes of each functional runwere excluded to prevent T1 saturation
artifacts, and detrending (up to 2nd degree polynomials) was applied
within the GLM. To identify the face-areas from the FOB data, we
contrasted faces vs. all other visual categories59. Regions of interest
(ROIs) in each hemisphere were defined as the intersection of a sphere
around the peak voxel identified by this contrast and the gray matter,
resulting inROIs of ~100voxels. Since face-processing is not lateralized
in macaque monkeys68, we combined the voxels in each of the face-
areas from the two hemispheres for all our analyses (Monkey P: ML
204, AL 185, AM 187; Monkey L: ML 198, AL 190, AM 204 voxels).

For the testing phase of the statistical learning experiment, we
resolved trial-specific activation using the least squares-single
approach69. In this approach, a separate GLM is calculated for each
trial and the design matrix contains two main task-related regressors:
the trial-of-interestwas defined as the first regressor and all other trials
in a run, irrespective of the experimental conditions, were simulta-
neously defined as the second (nuisance) regressor. This was done
iteratively for every stimulus within a run. The regression coefficient
for the trial of interest was contrasted with the baseline and the
t-statistic obtained for each trial was used for further analyses70.

Pattern separability
Pattern-separability was computed across facial identities using cosine
distances, a measure commonly used in the pattern separation litera-
ture. Cosine distances indicate the vector direction of a population
response irrespective of amplitude or sample size differences in the
experimental conditions71–74 and have thus been argued to be particu-
larly sensitive to the tuning of neural populations in the context of
fMRI75. To compute cosine distances, we extracted t-statistics from all
trials and conducted multivariate noise-normalization using the covar-
iance matrix of the residuals from the GLM done on every trial70. Cosine
distances were then converted to angles by computing the inverse
cosine. This was done for each stimulus in all ROIs and conditions,
respectively. All nine facial identities that were presented as the first
stimulus in a pair were used to estimate the separability in the ‘Context-
Free’ condition. The first image in a pair cannot be anticipated on the
basis of the preceding image and is thus processed in the absence of
contextual predictions. All nine trained successor stimuli were used for
the ‘Expected’ condition. The distances between the same nine stimuli
when presented as an expectation violation were used to quantify the
separability in the ‘Unexpected’ condition. Due to the circular nature of
angles, circular statistics76 were used to compare conditions and ROIs,
respectively. We used the Hotelling paired sample test for equal angular
means77 for paired comparisons, and the William-Watson test for inde-
pendent samples comparisons78. All p-values were corrected for multi-
ple comparisons using the Bonferroni–Holm method79. All the above
analyses were done using The Decoding Toolbox80 in MATLAB (The
MathWorks, Inc., R2018B) and custom MATLAB scripts.

Dimensionality
To estimate dimensionality of neural representational space in a given
ROI in the different experimental conditions, we computed the Parti-
cipation Ratio (PR)15,16,81. PR is the ratio of the square of the first
moment and the secondmoment of the eigenvalue probability density
function (PR = (∑i λi )2 /∑i λi

2, where λi are the eigenvalues of the cov-
ariance matrix). It quantifies how evenly variance of activity is spread
across stimuli; i.e., if variance iswidely spread, PR is high.We estimated
PR using trial-averaged, whitened t-statistics across voxels and stimuli
in each condition and ROI. Hence, our measure of dimensionality is
constrained by the number of stimuli. To determine whether the
dimensionality estimates are interpretable, we compared the esti-
mateddimensionality to thatof noise. Noise ceilingswereestimatedby
synchronized permutation (1000) of the stimuli and voxels for each
condition and ROI. We then tested whether the estimated dimen-
sionality is lower than the 95% confidence interval (CI) of the noise
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distribution. Similarly, pairwise differences between the dimension-
ality across ROIs or conditions were assessed by comparing whether
the increase in estimated dimensionality was higher than the 95% CI of
the noise distribution. All p-values were corrected for multiple com-
parisons using the Bonferroni–Holm method79. PR was quantified
using publicly available45 Python scripts and statistically analyzed
using custom MATLAB scripts.

Population response magnitude
Population responsemagnitudes19 were quantified as the Euclidean (L2)
norm across all voxels in a given ROI for each stimulus separately and
then averaged. This served to disentangle differences in themagnitude
of the IT population response from angular differences in stimulus
identity as it has been shown that population response magnitude and
population response vector direction can contain differential
information82. We computed the Euclidean (L2) norm from the
t-statistics per stimulus without further normalization so as not to
discard any relevantmagnitude differences, as recommended in ref. 19.
Paired t-tests were used to assess differences in population response
magnitude across expected and unexpected conditions, and corrected
for multiple comparisons using the Bonferroni–Holm method79.

Representational similarity analysis
Representational Similarity Analysis (RSA)11 was conducted to assess
tuning properties of face-areas and how they change with experi-
mental conditions.We first determinedwhether we could replicate the
well-known tuning properties of the face-areas using BOLD signals,
relative to the electrophysiological “gold standard”6,7. To this end, we
computed 1st level representational dissimilarity matrices (RDMs)
using cosine distances (as described in the separability section above)
on thepattern of BOLD responses across voxels in eachof theROIs.We
then compared these 1st level RDMs to representations predicted by
previous electrophysiology studies (Model/Hypothetical RDMs).

The choice of model RDMs was based on previous studies that
show that ML has a view-specific representation of facial shape, AL has
mirror-symmetric representation, and AM has view-invariant repre-
sentation of the facial appearance6,7. To compute hypothetical RDMs
for shape and appearance, the Active Appearance Model83,84 (https://
www.menpo.org/) was trained using 871 pre-annotated images and
used to fit each of our face stimuli to obtain 68 shape landmarks85. We
then computed Spearman rank correlation distances between the
feature vector of landmark positions for all the stimuli to compute a
hypothetical shape RDM. We used 45° and 135° faces to extract all
68 shape landmarks to ascertain a full set of shape landmarks for all the
facial views such that similarity between the faces could be computed
considering all views. Next, to compute an appearance representa-
tional space, each face was smoothly warped to the average shape
template made from the training set, using spline interpolation. This
warped image was then normalized for the mean and reshaped to
obtain an appearance feature vector. We then computed Spearman
rank correlation distances between the feature vector of the appear-
ance feature vector for all the stimuli to obtain a hypothetical
appearance RDM. Note that this appearance model RDM contains a
component of facial view and is different from the shape-free
appearance model referred to in ref. 7 where the authors computed
appearance representations on each view separately. Therefore, we
additionally computed a model RDM using only the frontal-view ver-
sions of the same nine facial identities and performed the same pro-
cedure as above to obtain the hypothetical appearanceRDM.Although
this hypothetical RDM is made with only frontal faces, correlating it
with an empirical RDM based on three different views is what makes
this a view-independent/invariant appearance model. Lastly, we
designed a hypothetical mirror-symmetry RDM by assigning the dis-
tance within each view and between left and right profile faces to
be zero6.

Comparisons of model RDMs with empirical, 1st level RDMs were
carried out using Spearman rank correlation11, partialling out low-level
similarities86 using a Gabor wavelet pyramid as a model of early visual
cortex87,88 (https://github.com/daseibert/image_similarity_toolbox).
To test whether the known electrophysiological properties of each
face-area best explain the representations in each of the three face-
areas, we compared the model fit of the candidate RDM (e.g., Fisher z-
transformed Spearman rank correlation between Mirror-symmetry
model RDM and the 1st level RDM in AL) to the average model fits of
the three other models (e.g., shape, appearance, and view-
independent appearance). This was done using bootstrapping
(10,000 samples, one-sided) in the context-free condition when no
predictability exists, and which corresponds most closely to the elec-
trophysiological studies that established the tuning properties of the
face-areas. To test whether tuning properties changed as a function of
experimental condition, i.e., whether there is an increase in higher-
order tuning properties in lower areas and a decrease in feedforward
tuning properties in higher areas, respectively, we compared the
modelfit of the candidate RDM in the conditionwith no context to that
of its model fit in the expected/unexpected identity conditions. This
was done by using Raghunathan’s test89 (one-sided) for dependent,
non-overlapping correlation coefficients which also takes inter-
correlations between themodel and experimental RDMs into account.

To study the representational geometry of PEs, we first computed
the relative difference between the expected and the respective
unexpected condition (view, identity). This effectively isolates PEs,
which are thought to signal the difference between expected and
unexpected stimuli with increases in neural activity8. Following this, we
computed pairwise cosine distances between the change in activity
pattern and determined 2nd level similarity bymeans of RSA27. For the
unexpected identity condition, cosine distances were computed
across the different identities before the 2nd level RSAwas conducted.
For the unexpected view condition, we calculated the difference
between the expected identity and the view violations of the corre-
sponding identity (both unexpected views of a given identity sepa-
rately). Then, the 1st level RDMwas computed across the different face
images, followed by 2nd level RSA (the Gaborwavelet pyramidwas not
partialled out for this analysis). Since PEs are thought to be computed
on the representational format of expectations, we hypothesized that
PEs also lead to an increase in high-level properties in lower areas of
the hierarchy. We assessed increases in high-level tuning properties
and decrease in feedforward tuning properties between unexpected
identity and context-free conditions using Raghunathan’s test for
dependent, non-overlapping correlations89. To compare the context-
free with the unexpected view condition, we used Fisher’s test for
independent, non-overlapping correlations90. These analyses were
carried out in R (v3.6.2) using the ‘cocor’ toolbox91.

Pattern connectivity
We conducted pattern connectivity analyses11 to investigate howmuch
shared information exists between pairs of face areas. For each con-
dition, pattern connectivity was conducted as a repeated measures
correlation92 – using 1st level RDMs while the variance across the
repeats, i.e., representations of each brain-area pair within the face-
processing hierarchy was taken into account. Additionally, we con-
trolled for spurious pattern connectivity by partialling out low-level
similarities86 using the Gabor wavelet pyramid87,88. Finally, we tested
whether there is an increase in pattern connectivity in the expected
condition as compared to the context-free condition using a boot-
strapped t-test.

Pupil entrainment
Pupil entrainment was used to determine whether the face-pair
structure was learned, in accordance with previous studies establish-
ing neural55,93 and pupillary entrainment10 as a signature of statistical
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learning. During training, face images were presented at a rate of 1 Hz
(the image frequency), resulting in a pair frequency of 0.5Hz. To
determine pupil entrainment to face pairs, we computed inter-trial
phase coherence94 (ITC). Only runs inwhichfixation stabilitywas >85%
for Monkey P and >80% for Monkey L were selected. Preprocessing of
pupil area data was done in accordance with previously published
workonpupil entrainment to face-pairs10: blinks andmissing datawere
linearly interpolated; outliers inpupil areawere detected usingmedian
absolute deviation (cutoff 3.5 for Monkey P and 1.5 for Monkey L) and
linearly interpolated. This was followed by low-pass filtering at 5 Hz
using a onepass-zerophase Kaiser-windowed sinc finite impulse
response (FIR) filter (filter order 1812, transition width 2.0Hz, pass
band 0–4.0Hz, stop band 6.0–500Hz, maximal pass band deviation
0.0010 (0.10%), stop band attenuation −60dB)95. Subsequently, data
were detrended per run and per block; the average pupil area over the
baseline of 2 s before the beginning of stimulation in each block was
subtracted. Data from Monkey P were then downsampled to 500Hz
and Monkey L was retained at the acquisition frequency (120Hz).
Pseudo-trials of 32 seconds were made from continuous data, time-
locked to the first stimulus in a face-pair. The pseudo trials had
30 second overlap for Monkey P and 26 second overlap for Monkey L.
An additional baseline correction was performed per pseudo-trial by
subtracting anaverage of the pupil area over the 2 s pre-blockbaseline.
Data for Monkey L which was acquired at a low sampling rate was
additionally detrended per pseudo-trial. We then computed a trial-by-
trial Fourier transform using discrete prolate spheroidal sequences
(DPSS) as tapers with a spectral resolution of 0.0625Hz, using the
Matlab toolbox Fieldtrip (v20190329; http://www.fieldtriptoolbox.
org/)96. The resulting complex spectra were used to calculate ITC.
ITC at the pair-frequency was normalized by dividing the mean ITC of
4 surrounding frequency bins (2 above, 2 below). Normalized ITC
values above 1 thus indicate entrainment at the respective frequency.
Statistical significance of ITC at the pair-frequency was determined
using a one-sided t-test against 1 in both monkeys. In addition, to
assess whether ITC at the pair frequency increased from early to late
phases of training, we compared the first and second half of training
sessions, respectively, inmonkey P (unpaired, one-sided t-test). Due to
technical issues and time constraints, pupil data formonkey Lwas only
available from the late training phase.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The data for the figures in
this study have been deposited in the Figshare database under acces-
sion code (https://doi.org/10.6084/m9.figshare.24233185). Further
information and requests for resources should be directed and will be
fulfilled by Caspar M. Schwiedrzik (c.schwiedzik@eni-g.de) upon
request. Source data are provided with this paper.
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