Menü mobile menu

Gibbon-Genom sequenziert

Mobiles DNA-Element erlaubt Rückschlüsse auf Evolution der Menschenaffen
Das Genom der Gibbons weist erstaunliche, im Laufe der Evolution entstandene, Reorganisationen auf. Der Nördliche Weißwangen-Schopfgibbon (Nomascus leucogenys), hier ein Männchen, ist eine der fünf sequenzierten Arten. Foto: Tilo Nadler
Die Weibchen des Nördlichen Weißwangen-Schopfgibbons unterscheiden sich von den männlichen Tieren durch ihr blassgelb gefärbtes Fell, den markanten schwarzen bis braunen Scheitelfleck und den weißen Ring um das Gesicht. Foto: Tilo Nadler
Die Weibchen des Nördlichen Weißwangen-Schopfgibbons unterscheiden sich von den männlichen Tieren durch ihr blassgelb gefärbtes Fell, den markanten schwarzen bis braunen Scheitelfleck und den weißen Ring um das Gesicht. Foto: Tilo Nadler
Ein markantes Merkmal der Gibbons ist das Schwinghangeln von Baum zu Baum. Gene, die für die Ausbildung längerer Arme oder stärkere Muskeln wichtig sind, konnten als positiv selektiert identifiziert werden. Foto: Tilo Nadler
Ein markantes Merkmal der Gibbons ist das Schwinghangeln von Baum zu Baum. Gene, die für die Ausbildung längerer Arme oder stärkere Muskeln wichtig sind, konnten als positiv selektiert identifiziert werden. Foto: Tilo Nadler
PD Dr. Christian Roos ist Primatengenetiker am Deutschen Primatenzentrum. Foto: Christian Kiel
PD Dr. Christian Roos ist Primatengenetiker am Deutschen Primatenzentrum. Foto: Christian Kiel

Ein internationales Forscherteam, darunter auch Christian Roos, Markus Brameier und Lutz Walter vom Deutschen Primatenzentrum (DPZ) in Göttingen, hat das Genom der in Südostasien beheimateten Gibbons entschlüsselt. Damit wurde erstmals die gesamte genetische Information von fünf verschiedenen Arten dieser Primatenfamilie sequenziert. Vergleiche mit Genomdaten des Menschen sowie unserer nächsten Verwandten, den Großen Menschaffen, zeigen, dass wir alle zwar genetisch vom gleichen Vorfahren abstammen, sich die Erbinformation der Gibbons jedoch im Laufe der Evolution sehr schnell und sehr stark verändert hat. Die Forscher konnten ein neues, nur in Gibbons vorkommendes, springendes DNA-Element identifizieren, das die Mutationsrate erhöht und damit eine entscheidende Bedeutung für die evolutionäre Entwicklung hat. Ihm verdanken die sich elegant durch die Wälder Südostasiens hangelnden Affen unter anderem ihre langen, kräftigen Arme. Die jetzt in der Fachzeitschrift Nature veröffentlichte Studie erlaubt wichtige Einblicke in die molekularen Grundlagen dieser Evolution (Carbone et al. 2014).

Genetisch sind die als Kleine Menschenaffen bezeichneten Gibbons vom Menschen weiter entfernt als die Großen Menschenaffen Schimpansen, Bonobos, Gorillas und Orang-Utans. Im Stammbaum der evolutionären Entwicklung der Primaten nehmen die Gibbons trotzdem eine Schlüsselstellung ein. Ausgehend von gemeinsamen Vorfahren, den Menschenartigen (Hominoidea), haben sie sich im Laufe der Evolution als erste von der Erblinie der Großen Menschenaffen und des Menschen abgespalten.

„Die vollständige Sequenzierung des Gibbon-Genoms stand bis jetzt noch aus“, sagt Christian Roos, Wissenschaftler in der Abteilung Primatengenetik des DPZ. „Um die menschliche Evolution vollständig zu verstehen und Rückschlüsse auf unsere evolutionären Wurzeln zu ziehen, müssen wir auch unsere stammesgeschichtlich weiter entfernten Verwandten untersuchen.“

Genetische Unordnung und springende Gen-Abschnitte

Bei ihren Genom-Analysen fanden die Wissenschaftler heraus, dass sich die Erbinformation der Gibbons in ihrer Gesamtheit von der des Menschen und der Großen Menschenaffen unterscheidet. „Die genetische Information an sich gleicht der unsrigen“, erklärt Christian Roos. „Allerdings sind große Teile der DNA und damit viele Gene auf den einzelnen Chromosomen anders angeordnet.“ Diese „chromosomale Unordnung“ ist ein Hauptmerkmal des Gibbon-Genoms und hat sich vermutlich nach deren Abspaltung von der Erblinie der Großen Menschenaffen und des Menschen ereignet. Durch weitere Untersuchungen der Gibbon-DNA konnten die Wissenschaftler schließlich eine mögliche Ursache für diese Genomveränderungen identifizieren: Ein springendes DNA-Element, LAVA-Transposon genannt, das kopiert und an einer anderen Stelle im Genom wieder integriert werden kann. Transposons oder springende Gene sind bislang in vielen unterschiedlichen Organismen nachgewiesen worden. Das LAVA-Transposon ist jedoch spezifisch für das Gibbon-Genom. Das besondere an diesem DNA-Element ist seine Positionierung in genau jenen Genen, die eine Rolle bei der Chromosomenverteilung während der Zellteilung spielen und diese damit beeinflusst. Analysen der stammesgeschichtlichen Entwicklung der Gibbon-Linie zeigten zudem eine Verbindung zur Existenz der LAVA-Transposons. Deren erstes Auftreten konnte mit hoher Wahrscheinlichkeit zum Zeitpunkt der Abspaltung der Gibbons von der Linie der Großen Menschenaffen und des Menschen eingeordnet werden.

Genetische Grundlagen für Gibbon-spezifische Lebensweise

Durch DNA-Vergleichsanalysen konnten die Forscher zudem Gene identifizieren, die einer positiven Selektion unterliegen. Im Laufe der Evolution entwickelten sich bevorzugt die Gene weiter, die die Anpassung der Gibbons an ihre Lebensweise begünstigten. Dazu gehören Gene, die anatomische Spezialisierungen wie längere Arme oder eine stärkere Muskelbildung hervorrufen. Zu den Gibbon-Genen, die eine positive Selektion durchlaufen haben, gehören beispielsweise TBX5, das für die Entwicklung der Vorderextremitäten benötigt wird und COL1A1, welches für die Ausbildung des Proteins Kollagen, eines der Hauptbestandteile des Bindegewebes in Knochen, Zähnen und Sehnen, verantwortlich ist.

„Die identifizierten Gene konnten nur im Gibbon-Genom als positiv selektiert identifiziert werden“, sagt Christian Roos. „In zukünftigen Projekten wollen wir noch weitere Gibbon-Arten sequenzieren. Dabei hoffen wir, diese Gene weiter charakterisieren zu können und möglicherweise noch andere Gibbon-spezifische Gene zu identifizieren.“

 

Originalpublikation

Carbone, L. et al. (2014): Gibbon genome and the fast karyotype evolution of small apes. Nature Epub ahead of print. DOI: 10.1038/nature13679